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TRANSFER MAP APPROACH TO THE BEAM-BEAM INTERACTICN
Alex J. Dragt

Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545
and

University of Maryland, College Park, Maryland 20742

Abstract

A study is made of a model for the beambeam interaction in ISABELLE using
numerical methods and the recently developed method of Transfer Maps. It is
found that analytical transfer map calculations account qualitatively for all
the features of the model observed numerically, and show promise of giving
quantitative agreement as well. They may also provide a kind of "magnifying
glass" for examining numerical results in fine detail to ascertain the
presence of small scale stochastic motion that might lead to eventual
particle loss. Preliminary evidence is presented to the effect that within
the model employed, the beam-beam interaction at its contemplated strengths
should not lead to particle loss in ISABELLE,



1. Introduction

The purpose of this paper is to explore the model of Herrera, Month, and

(1) for the ISABELLE beam-beam interaction with the aid of the
(2)

Peierls
recently developed method of Transfer Maps and its essociated Lie

algebraic techniques.(s)
g": (1,4)

The model employed for the beam-beam interaction
is "weak-stron One beam, the strong beam, is taken to be fixed, and
the other beam, the weak beam, is treated as a cr.'ection of particles that
are affected by their passage through the strong beam but not by each other.
The strong beam is assumed to be an wnbunched ribbon in the horizontal plane
whose vertical charge distribution is well described by a Gaussian shape. The
weak beam also lies in the same horizontal plane and crosses the strong beam
at a fixed angle. Only vertical deflections of the weak beam by the strong

beam are taken into account.

1n the strong beam-weak beam limit, the net motion of a particle in the
weak beam can be viewed as the continual repetition of two sequential
motions: passage through the storage ring followed by passage through the
strong beam. See Fig. 1. The equations of motion for each of these two
passages (through the ring and through the strong beam) are Jerivable from
Hamiltonians, and therefore each passage is described by a symplectic (Poisson

bracket preserving) transfer map.(z'a)

By design, the passage through a storage ring is well described by a
linear map. Upon restricting attention only to vertical motion and making a

suitable choice of coordinates, the "ring" transfer map can be written as

q' = q cos(2nw) + p sin(2mw) (1)
p' = - q 8in(2mw) + p cos(2nw) .

Here q is proportional to the vertical coordinate of a particle in the weak
beam, p is a suitably chosen canonically conjugate momentun, and w modulo an

(1)

integer is the tune of the storage ring. The unprimed variables q,p
specify the particle orbit just as it enters the ring, and the primed

variables q',p' describe the orbit upon exit.



The effect of passage through the strong beam is more complicated. To
find the "beam" transfer map exactly, it is necessary to integrate the
nonlinear equations of motion for a particle passing through the strong beam.
However, a good approximation to this map is given by assuming that the
particle suffers a vertical momentun change depending only upon its initial

vertical position, and that the vertical position itself remains unaffected:

qu - qo (2)
p" - P' + u(qv) .

This impulse approximation becomes exact in the limit that the interaction
region becomes a point and/or the transit time through the region approaches
zero. In any case, the beam mapping (2) is symplectic, and therefore its use

-will produce no qualitative error.

The function u is proportional to the electrostatic force exerted by the
strong beam. In the coordinates and Gaussian model employed, u is given by

(1)

the relation

q/3 _.2
ulq) = 4mD/¥3 f dt e ¢ . (3)
0

(%)

Here D is the beam-beam strength parameter that typically has values

3 to 10-2. It is normalized in such a way that the

ranging from 10
beam~beam interaction depresses the tune for infinitesimal betatron

oscillations by an amount D when D is small.

There is one last cavealL to be made. According to the current design,
ISABELLIE will actually have 6 collision regions separated by 6 identical
lattice sections. Thus, in reality, the maps 1 and 2 must be iterated 6 times
to simulate the effect of one complete turn. Correspondingly, equation (1) is
the transfer map for one lattice section and w modulo an intiger is actually

1/6 of the total machine tume.



In this paper the effect of repeated iteration of the maps (1) and (2) are
studied using Transfer Map methods and results are compared with numerical

calculations.
2. Transfer Map Results

To treat q and p cn an equal footing, it is notatiomally convenient to

introduce varisbles z, and z, by the relations

z, = q (4)

z, = p .

Employing this notation, let f£(z) be any function of the phase-space variables

z. With each such function f there is an associated Lie operator F. This

operator acts on functions and is defined by the rule
Fg = [f,8] . (5)

Here g is any function of the phase-space variables, and the square bracket

[, ] denotes the Poisson bracket operation familiar from classical mechanics.

Next, consider the object exp(F), called a Lie transformation, defined by

the exponential series

exp(F) = I + F + F2/21 + P31+ ... (6)



More explicitly, the action of exp(F) on an arbitrary function g is given by

tha expression

exp(F)g = g + [f,g] + [f,[f,g])/2! + ....

Now consider the operator exp(Fz) where F

associated with the quadratic polynomial

2 2
f2 - nw(zl + zz) .-

It is easily verified that

F2 z, = [fz,zll - 2‘nwz2

Fz z, = [fz,zzl - - 21rwz1 .

2

is the Lie operator

Consequently, use of (7) and (9) gives the relation

exp(Fz) z, "z ¢+ zz(2ﬂw) - z1(2nw)2/2l

- z2(2"w)3/3! + ...

z, cos (2mw) + z,

Similarly, it can be checked that

sin(2mw) .

exp(Fz) z, =~ %, sin(2mw) + z, cos (2mw) .

(7

(8)

(9)

(10a)

(10b)



Therefore the ring transfer map (1) can be written in the compact form
' - exp(Fz) x . (11)

A similar Lie transfomation representation can be found for the beanm
transfer map (2). Let £ (z) be the function defined by the relation

£lz) = 6[ 1 w@) aq . (12)

The Poisson bracket relations gnalogous to (9) are
1 - [fbp 81] =0 (13)
Fb x, = [fb' zz] - afblazl - u(zl)

z, = (£

b 2 [fbl z2]] - [fb) u(zl)] - 0. etec.

'bl

Consequently the infinitr sum (7) is trivial to evaluate in this case because
it termingtes. One finds the result

exp(l’b) z, =5, (14)

Tnerefore the beam transfer map (2) can be written in the form

' = exp(F) ' . (15)



Cambining the two results (11) and (15), one finds that the net transfer
map M for passage through the ring followed by passage through the strong beam
is given by the product

M= exp(l-"z) exp(Fb) . (16)

The observant reader may be worried about the order in which the two factors
appear in (16). It can be verified that the above order indeed is correct

because Lie transformations have the property
exp(Fz) gz) =g exp(Fz) z = g(z') (17)
for any function g(z).(a)

The problem at hand is to evaluate M" for large n in order to compute
the effect of many passages through the ring and the strong beam. The
computation of M* would be easy if a Lie operator H could be found such that
M could be re-expressed in the form exp(H), for then M™ would be simply
given by exp(nH). The determination of such an H is a standard problem in the
theory of Lie algebras that is solved oy using the Campbell-Baker-Hausdorff

fornula. 3’

This formula gives H in terms of F, and F,, and their

mul tiple commutators. In addition, there i8 an analogous formula that gives
the function h associated with H in terms of f2 and fb' and their multiple
Poisson brackets. It also can be shown that the computation of exp(nH) is
equivalent to the integration of a "trajectory" in "z space" for n wnits of
"time" using -h as an "effective" Hamiltonian. Consequently, the function
h(z) is formally invariant under the map. This means that the function h(z)

generalizes the Courant-Snyder invariant to the case of nonlinear motion.



For the problem under consideration, h is given by the formal operator
formula,

-1
hwf, +F [1-ep-F)] " £ +.... (18)

The terms not shown in the series involve Poisson bruckets with more than one
fb’ and therefore are quadratic and higher order in the beam-heam strength

parsmeter. Consequently, as it stands, equation (18) is correct through first
order in the beam~beam strength.

The computation of the effect of the operator F'2 and functions of Fz,
such as occur in (18), is facilitated by the introduction of "polar”
coordinates in phase space and the use of Fourier series. This can be

achieved in a canonical way by using action angle variables a, ¢ defined by
the relations

q=- zl = (2&)1/’2 sin ¢ (19)

P™z, "= (2:1)1/2 cos ¢ .

It is evident from (5) and (8) that Fz annihilates any functien of a.
By contrast, use of (1), (11), and (17) shows that

exp(Fz) an/Z exp(ind) = exp(i2nmw) an/Z exp(ing) . (20)



Coasequently, the functions exp(ind) are eigenfunctions of F2 with

eigenvalues i2anw:

F, exp(ing) = i2nmw exp(ind) . (21)

This result can also be obtained by direct evaluation of the Poisson bracket
(£,, exp(ing)].

The determination of h as given in (18) is now straightforward. Inserting

(19) into (12) and making & Fourier expansion, one finds

£, = z:n(a) exp(iZnd) (22)
where
1 1
€, = lmnaf f du dv v exp(-3au2v2)
0 0

(23)

x [In(3au2v2) - In'(3au2v2)] .

Here the symbols In denote modified Bessel functions, and use has been made
(5)

of the standa’ d relations

exp(x cos y) = z In(x) exp (iny) (24a)
In+1 + In—l - 2In' . - (24b)



_lo_

Now insert (22) into (18) and use the eigenfunction property (21).

The result
is that h is given in conmplex form by the expression,
- -]
h = - 21va + z ¢ (a) [20mu/ sin(2nmw) Jexp [2in(g + m)] , (25a)
and in real fom .by the expression,
h = - 2Twa + co(a) +2 z cn(a)[ZnTrw/sin(ZnW)]cos[Zn( ¢ + mw]. (25b)
1

The expressions (25) provide a generalization of the Courant-Snyder

invariant inrough first order in the beam-beam interaction strength.

Upon
inspecting them, several points are immediately evident:
(a) Resonances occur and the formulas diverge whenever the
tune w is of the form
w = k/(2N) (26)

where k and N are integers. Thus there are resonances at

half-inceger tunes, quarter-integer tunes, sixth-integer tunes,
etc. This was to be expected because u(q) as given by (3)

contains no even powers and all odd powers of q.
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(b) The strengths of the varinus order resoninces are

(5)

proporticnal to ncn(a). Using the large n expansion,

In(x) ~ exp [~ n log(2n/ex)] , (27)

one finds from (23) that tbh~ strengths of the various resonances fall off
faster than exponentially as u is increased. Therefore the sizes of
various resonance features in phase space should decrease rapidly with the
order of the resonance. Moreover, these features should decrease in size

according to their proximity to the origin in phase space.

It also follows that (25) converges rapidly at all tune values for
which w is badly approximated by rationals. Indeed, the points in tune

(6)

space where (25) fails to converge are of measure zero.

(c) With the aid of time reversal invariance it can be shown franl
(16) that the locations of various features in phase space such as fixed
points and separatrices must be symetric about the line ¢ = 7/2 - 7w for
a1li hear-beam interaction strengths. (Note that according to (19), the
line ¢ = 0 corresponds to the p axis.) Because f, as given by (12) is
even ir. zZ)» there is also symmetry in phase space with respect to
inversion through the origin. Examination of (25) shows that both of

these symmetries are present in h.



To calculate the behavior of M exactly at and near resonance, it is
necessary to work with powers of M. For example, consider m'th order
resonances. Then m » 2N and tunes near an m'th order resonance value can be
written in the form

v-kln-;ﬁ (28)

vwhere § measures departure from exact resonance. Moreover, it can be shown
that there is a Lie operator Er such that M" can be written in the
exponential form exp(ml'lr) at and near resonanca without divergence
difficulties Finally, there is again an effective Hamiltonian h_
corresponding to Hr that is given in this case by the formula

by = (8/w)E, + (S1IF, {1 - exmpl-mis/wE,)} (29)

x {1 + e:q:[-l’zl + enp[-zl?z] + ... # exp[--(n-l)rzl} £, 4+ .een
Upon inserting (22) into (29), one finds

hr = - 2m8a + co(a) + Zch(a)IZnTrG/uin(Znﬂw)]con [2a(d +7w)]. (30)
1l

It is evident that the expression for h, is well behaved near by and exactly
at the resonance value § = 0.
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As a specific example, consider the case of fourth order .esonances. Near

a one-quarter twme k =1, N= 2, and
w=1/4 + 6§ . (31)
‘Thus one finds for amall & that

2nm8 /sin 2amw = 2nn8 /sin(nm/2 + 2n07s) (32)

= 0(6) for n odd

n/2 + 0(62) for n even.

= (—l)
Consequently, neglecting terms of order 6D and 62, one has in this case for

hr the expression

h. o= - 2n8a + co(a) + 2 z (-1)“/2

n even

cn(a) cos[n(¢ + mw)). (33)
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Because -hr acts as an effective Hamiltonian, the fixed points of Ml'

ave the equilibrium points of h_. These points are therefore the solutions
to the equations

0= 3hrlaa - - 216 + co'(a) - 2c2'(a) cos 4(¢ +w) + ... (34a)
0 =3h_/3¢ = Bc,(a) sin 4(¢ + ™)

- 16c4(a) sin 8(¢ + Tw) + .... (34b)

The solutions to (34b) are readily found to be

¢ +mw=0, n/4, 204, ..., Wnlb . (35a)

When these solutions are inserted into the “radial" equation (34a), it takes
the simple form

0w=-276+ co'(a) + 2c2'(a) + 2c4'(a) N (35b)

Thus, as expected, there are 8 fourth-order fixed po’nts when the tune is near
a guarter.
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The nature of these fixed points can be obtained by expanding hr about
them. At the fixed points one finds the results

3%h /28 = c_"(a) + 2¢,"(a) + 2¢,"(a) ... (36)
3% _/3ad0 = 0

2%n /292 = #32¢,(a) - 128 c;(a) + ...

It follows that if the equations (36) are dominated by their first terms, then
the fixed points are alternately elliptic and hyperbolic (stable and
(7)

unstable), as also expected, because the quadratic form corresponding to

(36) is either definite or mixed.

Note, moreover, that equations (36) and all the higher order terms in the
Taylor series expansion about a fixed point are linear in the beam-beam
interaction strength. Consequentl::, for small beam-beam interaction strength,
the size and shape of resonant islands and their associated separatrix
structure are independent of the beam-beam interaction strength, and are
dependent only on their location in phase space. Only the width of the
resonance in tune space, i.e., the rate at which various features move as § is
changed, depends on the interaction strength. This latter d:pendence can be
inferred from (34a) and (35b).

3. Numerical Results

A proper study of the usefulness of h and h, involves the numerical
integration of the trajectories that they generate, or at least a determina-
tion of their level lines, and a comparison of these results with points gen-
erated by iterating M and M® mumerically. Such a comparison has been made
in a similar but simpler problem involving the insertion of a short sextupole

(2)

element into a ring. In that case the quantitative agreement proved to

be excellent, and eimilar agreement is expected for this problem as well.
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However, because of the complexity of evaluating the coefficients cn(a),
the equivalent study has not yet been carried out for the present problem.
Instead, a preliminary exploration of the nature of M has been made by
studying the points obtained by iterating M numerically. In this section it
will be shown that M indeed does have all the qualitative properties that were

predicted in the previous section.

Figures 2 through 5 show phase-space plots generated by successive
iterates of M for various initial conditions and tune values. The phase-space
coordinates range over (-2, 2), and the scale is chosen s8¢ that the beam lies
within (-1, 1).(1) The tunes are near the resonant values 1/2, 1/4, 1/6,
and 1/8 respectively, and the beam-beam interaction strength is 10-2.

Observe that the size of resonance features, e.g., island dimensions, indeed
do decrease with increasing order of the resonance. Symmetry about the line
¢ = /2 -— 7w and inversion symmetry are evident. The number and nature of

fixed points is as anticipated.

Figure 6, which appears to he almost identical to Fig. 3, was obtained by
running at a tune w = 0.253 and a beambeam interaction strength of

-3

5x 10 ~.

independent of the size of the interaction strength provided the tune is

It shows, as predicted, that the size of resonant features is

suitably adjusted so as to make the features appear in the same region of
phase space. Note that according to (35b), when the size of the cn is

halved, 6 should also be halved to keep the radial location of fixed points
the seme. Examination of the tune values for Figs. 3 and 6 shows that this is
indeced the case. When the tune is thus adjusted, there is a slight change in

the angular location of the fixed points in accord with (35a).

Figure 7 shows a tenth-order resonance obtained by running near a tune of
1/10. It was not shown as part of the sequence of Figs. 2 through 5 because
the island structure becomea too small to see when (by adjusting the tune) it
is located closer to the origin. This example verifies that the sizes of
resonant features decrease with proximity to the origin, and in fact the

higher the order of the reaonance, the morc rapid is the decrease.
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Figure 8 shows the result of running with a nonresonant tune of 77/100.
On the scale shown and for the number of iterations made, there secems to be no
evidence that any points will leave the beam envelope. The nature of the map
and any tendency for points to move off what appear to be invariant curves
could be examined in finer detail by studying the value of h(z) at each
point. Because h generalizes the Courant-Snyder invariant, its variations
could be used as a kind of “magnifying glass" to give evidence for small scale
homoclinic or stochastic behavior that is not otherwise diecermible to the
naked eye and that might lead to eventual particle loss. This method has been
used to show that particle motion in the Van Allen radiation belts is not

(8)

integrable.

Figure 9 illustrates that stochastic behavior indeed can occur for the
beam-beam problem if the interaction strength is large enough and the tune
(taking into account its depression by the beam-beam interaction) is
sufficiently close to a resonant value. The stochastic behavior in this case

leads to particle losses within a few hundred turns.
4. Concluding Remarks and Comments

Operation oS ISABELLE with each 1/6 lattice section having a tune near a
multiple of 1/2, 1/4, 1/6, or 1/8 corresponds to operating the total ring near
an  .nteger, half integer, or quarter integer tune. Because operation of the
total ring near any of these tunes is probably already precluded by structure
resonances in the ring, the first beam-beam interaction resonance of
significance is at least of tenth order. Figure 7 illustrates that the
tenth-order resonance structure is small even when it is far from the
phase-space origin, and consequently it is even smaller when it is withic the
beam. This observation, and the regular behavior found in the nonresonant
case of Fig. 8, give preliminary evidence that within the model employed, the
beam-beam interaction at its contemplated strengths should noc lead to
particle loss. However, in accord with our earlier comment, it would be
worthwhile to examine the behavior of h(z) and hr(') for evidence of small

scale stochastie behavior.



The conclusion that resonances below tenth order are not significént
depends on the assumption that all 6 interaction regions and all 6 lattice
periods are identical. The validity of this assumption should be examined,
and the effect of lower order resonances should be re-examined when the 6
interaction regions are all slightly different.

Finally, consideration should be given to the possible effect of adding
nonlinearities to the transfer map for the ring. It is anticipated that the
addition of suitable nonlinearities, perhaps by the use of octupoles, would
lead to a reduction in the size of beam-beam interaction resonance
structures. In particular, it would then no longer be the case that the size
of resonant structures would depend only on their location in phase space and
not on the interaction strength. It might turn out, of course, that the ring
nonlinearities required to achieve a significant effect would be difficult to

obtain or would be undesirable for other reasons.
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Schematic representation of particle motion in a storage ring and a

colliding beam region.

Phase-spac2 plot generated by succesive iterations of the transfer map
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Figure Captions

M for various initial conditions. The tune i8 near one half. The

coordinates extend from - 2 to 2, and are normalized in such a way that

the beam will be within the unit circle under actual operating conditions.
Tha beam—-beam interaction strength is 107<,

Phase-space plot when the tune is near one fourth.

Phase-space plot when the tune is near ome sixth.

Phase-space plot when the tune is near one eighth.

Phase-space plot when the interaction strength is half that of Fig. 3.

The

initial P»9 valyes are the same as in Fig., 3, and the tune is ad_]usted to
make various phase-space features match those in Fig. 2.

Phase~space plot near a tune of one tenth.

Phase-space plot for a nonresonant tune.

Phase-space plot showing stochastic behavior for large beam~beanm

interaction strength.
line ¢ = w/2 - ™w.

The reader is invited to draw the symmetry
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